skip to main content


Search for: All records

Creators/Authors contains: "Cabugao, Kristine Grace M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    Sphagnumpeatmosses are fundamental members of peatland ecosystems, where they contribute to the uptake and long‐term storage of atmospheric carbon. Warming threatensSphagnummosses and is known to alter the composition of their associated microbiome. Here, we use a microbiome transfer approach to test if microbiome thermal origin influences host plant thermotolerance.

    We leveraged an experimental whole‐ecosystem warming study to collect field‐grownSphagnum, mechanically separate the associated microbiome and then transfer onto germ‐free laboratorySphagnumfor temperature experiments. Host and microbiome dynamics were assessed with growth analysis, Chlafluorescence imaging, metagenomics, metatranscriptomics and 16S rDNA profiling.

    Microbiomes originating from warming field conditions imparted enhanced thermotolerance and growth recovery at elevated temperatures. Metagenome and metatranscriptome analyses revealed that warming altered microbial community structure in a manner that induced the plant heat shock response, especially the HSP70 family and jasmonic acid production. The heat shock response was induced even without warming treatment in the laboratory, suggesting that the warm‐microbiome isolated from the field provided the host plant with thermal preconditioning.

    Our results demonstrate that microbes, which respond rapidly to temperature alterations, can play key roles in host plant growth response to rapidly changing environments.

     
    more » « less